Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Dairy Sci ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38608947

Dietary methane (CH4) mitigation is in some cases associated with an increased hydrogen (H2) emission. The objective of the present study was to investigate the acute and short-term effects of acceptors for H2 (fumaric acid, acrylic acid or phloroglucinol) supplemented via pulse-dosing to dairy cows fed CH4 mitigating diets (using nitrate or 3-nitrooxypropanol), on gas exchange, rumen gas and VFA composition. For this purpose, 2 individual 4 × 4 Latin square experiments were conducted with 4 periods of 3 d (nitrate supplementation) and 7 d (3-nitrooxypropanol supplementation), respectively. In each study, 4 rumen cannulated Danish Holstein cows were used. Each additive for CH4 mitigation was included in the ad libitum fed diet within the 2 experiments, to which the cows were adapted for at least 14 d. Acceptors for H2 were administered twice daily in equal portions through the rumen fistula immediately after feeding of the individual cow. In Exp. 1 (nitrate), the treatments were CON-1 (no H2-acceptor), FUM-1 (fumaric acid), ACR-1 (acrylic acid) and FUM+ACR-1 (50% FUM-1 + 50% ACR-1). In Exp. 2 (3-nitrooxypropanol), the 3 treatments, CON-2, FUM-2, and ACR-2, were similar to CON-1, FUM-1 and ACR-1 treatments, however the fourth treatment was PHL-2 (phloroglucinol). Gas exchanges were measured in respiration chambers, while samples of rumen liquid and headspace gas were taken in time series relative to feeding and dosing on specific days. Headspace gas was analyzed for gas composition and rumen liquid was analyzed for volatile fatty acid composition and dissolved gas concentrations. Headspace gas composition and dissolved gas concentration were only measured in Exp. 2. Dry matter intake was reduced upon acrylic acid supplementation. There were no significant effects of any treatments in any experiments on H2 emission, except for a decrease in hourly H2 emission rate (g/h) at 1 h after feeding in both experiments. In Exp. 2, H2 headspace proportions increased by ACR-2 supplementation, whereas dissolved concentrations were unaffected. In Exp. 1, cows on ACR-1 increased propionate proportion at 1 h after feeding. In Exp. 2, both FUM-2 and ACR-2 increased rumen propionate proportion in the hours after feeding and dosing. There was no effect on rumen acetate for cows on PHL-2. There was a strong positive correlation between rumen dissolved CH4 and headspace CH4 (r = 0.84), whereas the equivalent correlation was weaker for H2 (r = 0.41). For the relationship between dissolved concentrations and emissions of CH4 and of H2, there was a moderate positive correlation for CH4 (r = 0.54), whereas it was weak for H2 (r = 0.28) with zero slope. In conclusion, the results suggested that fumaric acid and acrylic acid to some extent was reduced to propionate without associative effects on measures for H2 redirection. Furthermore, phloroglucinol seemed not to be metabolized in the rumen in the present study, as no effects on rumen acetate or measures of H2 were observed. Changes in H2 headspace and emission may be a poor proxy for actual changes in the rumen fluid concentration of H2.

2.
J Dairy Sci ; 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38310957

Enteric CH4 produced from dairy cows contributes to the greenhouse gas emission from anthropogenic sources. Recent studies have shown that the selection of lower CH4 emitting cows is possible, but this would be simpler if performance measures already recorded on farm could be used, instead of measuring gas emission from individual cows. These performance measures could be used for selection of low emitting cows. The aim of this analysis was to quantify how much of the between-cow variation in CH4 production can be explained by variation in performance measures. A data set with 3 experiments, a total of 149 lactating dairy cows with repeated measures, was used to estimate the between-cow variation (the variation between cow estimates) for performance and gas measures from GreenFeed. The cow estimates were obtained with a linear mixed model with the diet within period effect as a fixed effect and the cow within experiment as a random effect. The cow estimates for CH4 production were first regressed on the performance and gas measures individually, and then performance and CO2 production measures were grouped in 3 subsets for principal component analysis and principal component regression. The variables that explained most of the between-cow variation in CH4 production were DMI (R2 = 0.44), among the performance measures, and CO2 production (R2 = 0.61), among gas measures. Grouping the measures increased the R2 to 0.53, when only performance measures were used, and to 0.66, when CO2 production was added to the significant performance measures. We found the marginal improvement to be insufficient to justify the use of grouped measures rather than an individual measure, since the latter avoid over fitting and simplify the model. Investigation of other measures that can be explored to increase explanatory power of between-cow variation in CH4 production is briefly discussed. Finally, the use of residual CH4 as a measure for CH4 efficiency could be considered by using either DMI or CO2 production as the sole predicting variables.

3.
J Dairy Sci ; 107(1): 220-241, 2024 Jan.
Article En | MEDLINE | ID: mdl-37690719

The objective of the present study was to investigate the effect of individual and combined use of dietary fat, nitrate, and 3-nitrooxypropanol (3-NOP) on dairy cows' enteric methane (CH4) emission and production performance. Twenty-four primiparous and 24 multiparous Danish Holstein cows (111 ± 44.6 d in milk; mean ± standard deviation) were included in an incomplete 8 × 8 Latin square design with six 21-d periods. Dietary treatments were organized in a 2 × 2 × 2 factorial arrangement aiming for 2 levels of FAT (30 or 63 g of crude fat/kg of dry matter [DM]; LF or HF, respectively), 2 levels of NITRATE (0 or 10 g of nitrate/kg of DM; UREA or NIT, respectively), and 2 levels of 3-NOP (0 or 80 mg/kg DM; BLANK or NOP, respectively). Treatments were included in ad libitum-fed partial mixed rations in bins that automatically measured feed intake and eating behavior. Additional concentrate was offered as bait in GreenFeed units used for measurement of gas emission. For total DM intake (DMI), a FAT × NITRATE interaction showed that DMI, across parities and levels of 3-NOP, was unaffected by separate fat supplementation, but reduced by nitrate with 4.6% and synergistically decreased (significant 2-way interaction) with 13.0% when fat and nitrate were combined. Additionally, 3-NOP decreased DMI by 13.4% and the combination of 3-NOP with fat and nitrate decreased DMI in an additive way (no significant 3-way interaction). The decreasing effects on DMI were more pronounced in multiparous cows than in primiparous cows. For treatments with largest reductions in DMI, eating behavior was altered toward more frequent, but smaller meals, a slower eating rate and increased attempts to visit unassigned feed bins. Energy-corrected milk (ECM) yield increased by 6.3% with fat supplementation, whereas ECM yield did not differ among diets including nitrate (FAT × NITRATE interaction). Cows supplemented with 3-NOP had 9.0% lower ECM yield than cows fed no 3-NOP. Based on three 2-way interactions including FAT, NITRATE, and 3-NOP, the combined use of the additives resulted in antagonistic effects on CH4 reduction. A 6% to 7% reduction in CH4 yield (CH4/kg of DMI) could be ascribed to the effect of fat, a 12% to 13% reduction could be ascribed to the effect of nitrate and an 18% to 23% reduction could be ascribed to the effect of 3-NOP. Hence, no combinations of additives resulted in CH4 yield-reductions that were greater than what was obtained by separate supplementation of the most potent additive within the combination. The CH4 yield reduction potential of additives was similar between parities. Increased apparent total-tract digestibility of organic matter (OM) in cows fed combinations including nitrate or 3-NOP was a result of a NITRATE × 3-NOP interaction. Apparent total-tract digestibility of OM was also increased by fat supplementation. These increases reflected observed decreases in DMI. In conclusion, combined use of fat, nitrate, and 3-NOP in all combinations did not result in CH4 reductions that were greater than separate supplementation of the most potent additive within the combination (3-NOP > nitrate > fat). Additionally, separate supplementation of some additives and combined use of all additives reduced DMI.


Milk , Nitrates , Propanols , Female , Cattle , Animals , Nitrates/pharmacology , Lactation , Dietary Fats/pharmacology , Methane , Diet/veterinary , Eating , Animal Feed/analysis , Rumen , Zea mays
...